Աստղ, երկնային մարմին, որի ներսում կատարվում են միջուկայինռեակցիաներ։ Աստղերը իրենցից ներկայացնում են մեծ լուսարձակող գազային միացություններ (գնդեր), որոնք առաջանում են հիմնականում գազափոշային միացություններից (հիմնականում ջրածնից և հելիումից) գրավիտացիոն սեղմումների հետևանքով։
Աստղի միջուկի ջերմաստիճանը չափվում է միլիոնավոր կելվիններով։
Աստղի ծնունդը և մահը
Աստղեր առաջանում են մշտապես՝ խոշոր միգամածություններում։ Դրանք հիմնականում կազմված են ջրածնից (Ջրածիմ), հելիումից և տիեզերական փոշուց, որոնց նախնական ջերմաստիճանը մոտ -263 °C է։ Նախասկզբնական նյութը տիեզերական տարածության մեջ գազի և փոշու ամպն է։ Հենց որ նյութի նմանատիպ թանձրուկները սկսում են հավաքվել միատեղ, առաջացած ձգողության ուժն արագացնում է այդ շարժընթացը։ Այդպիսի գոյացության կենտրոնում գազը սեղմվում և դառնում է ավելի ու ավելի տաք, և, ի վերջո նրա ջերմաստիճանն ու ճնշումն այքնան են մեծանում, որ սկսվում է միջուկային սինթեզը՝ ջրածնի ատոմների միավորումը։ Սինթեզի սկիզբը համարվում է նոր աստղի ծնունդը։ Հաճախ բազմաթիվ նոր աստղեր ծնվում են միմյանց մոտ՝ հսկայական ամպում։ Այդ ժամանակ նրանք առաջացնում են աստղերի ընտանիքներ, որոնց անվանում են աստղակույտեր։ Սակայն աստղերը հավերժ չեն։ Ի վերջո, դրանց միջուկում ջրածնային պաշարը սպառվում է։ Այդ ժամանակ աստղի չափերը փոխվում են, և այն աստիճանաբար մահանում է։ Հին աստղերը փքվում են՝ փոխարկվելով Կարմիր հսկաների, որոնք իրենց շիկացած գազի մի մասը ցրում են տարածության մեջ՝ հսկա, մշուշե օղակների տեսքով, և աստիճանաբար սառչում։
Աստղերի գույնը
Անզեն աչքով դիտելիս բոլոր աստղերը թվում են միևնույն գույնի՝ կապտասպիտակավուն։ Բայց իրականում նրանք տարբեր գույներ ունեն, և գույնը կախված է աստղի ջերմաստիճանից։
Շատ բարձր ջերմաստիճան ունեցող աստղերը, որոնք կոչվում են ջերմ աստղեր, ունեն կապույտ գույն։ Միջին ջերմաստիճանի աստղերը դեղնանարնջագույն են։ Իսկ համեմատաբար ցածր ջերմաստիճան ունեցողները, որոնք կոչվում են նաև սառը աստղեր, ունեն կարմիր գույն։
Մեր Արեգակը միջին աստիճանի դեղին գույն աստղ է. երբ այն սպառի իր ջրածնային վառելիքի պաշարը, կանցնի ակտիվության վերջին փուլ, կվերածվի կարմիր աստղի և ի վերջո կհանգչի։
Լույս:Լույսը շատ կարևոր դեր է կատարում մարդու կյանքում: Լույսի շնորհիվ մենք կարողանում ենք ճանաչել մեզ շրջապատող աշխարհը: Լույսն է, որ Արեգակից Երկիր հասնելով մեր մոլորակի վրա կյանքի գոյության համար անհրաժեշտ պայմանններ է ստեղծում:
Իսկ ի՞նչ է լույսը: Լույսի բնույթի վերաբերյալ առաջին գիտական տեսությունը ստեղծել է Իսահակ Նյուտոնը 17-րդ դարում:
Ըստ Նյուտոնի.Լույսը կազմված է փոքրիկ մասնիկներից՝ կորպուսկուլներից, որոնք լուսատու մարմինը առաքում է բոլոր ուղղություններով՝ ճառագայթների երկայնքով:
Գրեթե միաժամանակ, հոլանդացի գիտնական Քրիստիան Հյուգենսը առաջարկել է լույսի ալիքային տեսությունը:
Ըստ Հյուգենսի.Լույսը առաձգական ալիք է՝ լույսի աղբյուրից հեռացող համակենտրոն գնդոլորտների տեսքով:
Վակումում լույսի տարածումը հերքեց լույսի՝ առաձգական ալիք լինելը: Սակայն 19-րդ դարի երկրորդ կեսին, էլեկտրամագնիսական ալիքների փորձնական ստացումը, լույսի և էլետրամագնիսական ալիքների արագության համընկնելը, թույլ տվեց Մաքսվելին և Հերցին իրենց աշխատություններում հաստատել լույսի ալիքային բնույթը և լույսը նույնացնել էլետրամագնիսական ալիքի հետ:Լույս կամ տեսանելի ճառագայթում են անվանում 400−800ՏՀց (1ՏՀց=1012 Հց) հաճախության էլեկտրամագնիսական ալիքները, որոնք մարդու մոտ կարող են առաջացնել տեսողական զգայություններ:Տարբեր հաճախությունների ճառագայթումները մարդու մոտ տարբեր գույների զգայություններ են առաջացնում՝ սկսած կարմիրից՝ 400−480ՏՀց, մինչև մանուշակագույն՝ 670−800ՏՀց:
Հետագայում Ալբերտ Այնշտայնը՝ ֆոտոէֆեկտի երևույթը բացատրելիս, նորից անդրադարձավ լույսի մասնիկային բնույթին և ցույց տվեց, որճառագայթելիս և կլանվելիս, լույսը իրենից ներկայացնում է լուսային մասնիկների՝ ֆոտոնների հոսք: Այսպիսով լույսն ունի հատկությունների երկակիություն: Սակայն անկախ այն բանից, թե ինչ բնույթ ունի լույսը՝ մասնիկների հոսք է, թե էլեկտրամագնիսական ալիք, այն ներկայացվում է որպես ճառագայթներ, որոնք սկսվում են լուսատու մարմնից և տարածվում բոլոր ուղղություններով՝ ցույց տալով լուսային էներգիայի տարածման ուղղությունը:Տեսանելի տիրույթում ճառագայթող մարմնին անվանում են լույսի աղբյուր:Եթե լույսի աղբյուրի չափերը շատ փոքր են մինչև լուսավորվող մարմին ընկած հեռավորության համեմատ, ապա այն անվանում են լույսի կետային աղբյուր: Լույսի աղբյուրները բաժանվում են նաև բնական և արհեստական աղբյուրների: Լույսի բնական աղբյուրներն են՝ Արեգակը, աստղերը, կայծակը, լուսատիտիկը և այլն:
Լույսի արհեստական աղբյուրներն են՝ ջերմային աղբյուրները (շիկացման լամպ, գազայրիչի բոց, մոմի լույս և այլն) և ոչ ջերմային աղբյուրները (ցերեկային լույսի լամպ, լուսադիոդ, լազեր, հեռուստացույցի կամ համակարգչի էկրան):
Լույսի աղբյուր կարող են լինել ոչ միայն լուսատու մարմինները, այլև այն մարմինները, որոնք անրադարձնում են իրենց վրա ընկած լույսը բոլոր ուղղություններով, դարռնալով տեսանելի: Այդպիսի աղբյուրներ են՝ Լուսինը, մոլորակները և մեր շուրջը գտնվող բոլոր տեսանելի առարկաները: Լույսի տարածումը համասեռ միջավայրում:Ֆիզիկայի այն բաժինը, որն ուսումնասիրում է լույսի հետ կապված երևույթները, կոչվում է օպտիկա:Օպտիկայի այն բաժինը, որն ուսումնասիրում է լուսային ճառագայթների տարածման օրինաչափությունները՝ հաշվի չառնելոով նրանց ալիքային հատկությունները, կոչվում է երկրաչափական օպտիկա: Երկրաչափական օպտիկայի օրենքներից մի քանիսը հայտնագործվել է լույսի բնույթը պարզելուց շատ առաջ: Այդպիսի օրենքներից է՝ լույսի ուղղագիծ տարածման օրենքը, որը ձևակերպել է հույն գիտնական Էվկլիդեսը՝ մ. թ. ա. երրորդ դարում:
Համասեռ, թափանցիկ միջավայրում լույսն ուղղագիծ է տարածվում:Դրանում կարելի է համոզվել փորձերի օգնությամբ, որոնք հարմար է կատարել լազերային ցուցափայտի արձակած ճառագայթով: Այս կերպ կարող ենք տեսնել, որ ապակե անոթի մեջ լցված ջրում՝ համասեռ, թափանցիկ միջավայրում, լազերային ճառագայթը տարածվում է ուղիղ գծով:
Լույսի ուղղագիծ տարածման հետևանք են հստակ ստվերները, որոնք ընկնում են անթափանց մարմիններից, երբ դրանք լուսավորվում են լույսի կետային աղբյուրից:
Օրինակ՝ եթե կետային լույսի աղբյուրի և էկրանի միջև անթափանց գունդ տեղադրենք, ապա էկրանի վրա մուգ շրջանի տեսքով ստվեր կհայտնվի:Ստվերն այն տեղն է, որտեղ չի ընկնում լույսի աղբյուրի լույսը:
Եթե լույսի կետային աղբյուրի փոխարեն օգտագործվի ավելի մեծ չափեր ունեցող աղբյուր՝ լամպ, ապա հստակ ստվերի փոխարեն լուսավորված ֆոնին կստանանք ստվեր և կիսաստվեր: Դա ոչ միայն չի հակասում, այլ, ևս մեկ անգամ հաստատում է լույսի ուղղագիծ տարածման օրենքը:
Այն մասում, որտեղ լույս չի ընկնում լամպի և ոչ մի կետից, լիակատար ստվեր է, իսկ այն տիրույթում, որտեղ լույսը միայն որոշ կետերից է ընկնում՝ առաջանում է կիսաստվեր: Հսկայական չափերի ստվեր և կիսաստվեր գոյանում են Արևի և Լուսնի խավարումների ժամանակ: Արևի խավարումն առաջանում այն դեպքում, երբ Լուսինը՝ Երկրի շուրջը իր պտույտի ժամանակ, ամբողջովին կամ մասնակիորեն ծածկում է Արեգակը:
Իսկ, երբ Լուսինն է հայտնվում Երկրագնդի առաջացրած ստվերի կոնի մեջ, ապա տեղի ունենում Լուսնի խավարում:
Լուսնի խավարումների ուսումնասիրությունը հնարավորություն է տվել Արիստոտելին՝ մ. թ. ա. չորրորդ դարում, եզրակացնել, որ Երկիրը գնդաձև է, ինչի վկայությունը Լուսնի վրա Երկրագնդի ստվերի շրջանաձև լինելն է:
1.Երբ մետաղյա ձողը միացվի հոսանքի աղբյուրի բևեռներից մեկին, ապա նրա շուրջն առաջացնում … դաշտ: էլեկտրական և մագնիսական:
2. Կոճում հոսանքի ուժի փոփոխման դեպքում փոփոխվու՞մ է արդյոք նրա մագնիսական դաշտը. Հոսանքի ուժի մեծացման դեպքում մագնիսական դաշտն ուժեղանում է:
3. Նշված նյութերից որո՞նք են լավ ձգվում դեպի մագնիսը. Պողպատ:
4. Երկաթյա ձողը մոտեցվում է մագնիսի հյուսիսային բևեռին: Ի՞նչ բևեռ կառաջանա ձողի հակառակ ծայրում. Հյուսիսային:
5. Պողպատյա մագնիսը բաժանվում է երեք մասի: Նրա Ա և Բ ծայրերն օժտված կլինե՞ն մագնիսական հատկությամբ. Ա ծայրը կլինի հյուսիսային բևեռ, իսկ Բ-ն՝ հարավային:
6. Դանակի ծայրը մոտեցրին մագնիսական սլաքի հարավային բևեռին: Այդ բևեռը ձգվում է դեպի դանակը: Մագնիսացվա՞ծ է արդյոք դանակը. Դանակը մագնիսացած է. ծայրն ունի մագնիսի հյուսիսային բևեռ:
7. Ի՞նչ ուղղությամբ կշրջվի մագնիսական սլաքի հյուսիսային ծայրը, եթե այն մտցվի նկար 109-ում պատկերված մագնիսական դաշտի մեջ: Բ-ից Ա:
8. Նույնանուն, թե՞ տարանուն մագնիսական բևեռներից է առաջացացել նկար 110-ում պատկերված դաշտը: Նույնանուն:
9. Նկար 111-ում պատկերված է ԱԲ մագնիսը և նրա մագնիսական դաշտը: Բևեռներից ո՞րն է հյուսիսայինը, ո՞րը հարավայինը: Ա-ն հարավայինն է, իսկ Բ-ն հյուսիսայինը:
10. Երկրի հյուսիսային կիսագնդում գտնվող դպրոցական ամրակալանի վերին մասը մագնիսական սլաքի ո՞ր բևեռին կձգի: Ո՞ր բևեռին կձգի ամրակալանի ներքևի մասը: Երկու մասերն էլ կձգեն սլաքի հյուսիսային բևեռին:
Լույսի անդրադարձման և բեկման երևույթները օգտագործվում են լուսային ճառագայթների տարածման ուղղությունը փոխելու նպատակով՝ տարբեր օպտիկական սարքերում, ինչպիսիք են մանրադիտակը, աստղադիտակը, խոշորացույցը, լուսանկարչական ապարատը և այլն:
Այդ բոլոր սարքերում լուսափնջի կառավարումը իրականացվում է նրանց կառուցվածքի ամենակարևոր մասի՝ ոսպնյակի միջոցով:
Ոսպնյակ է կոչվում թափանցիկ, սովորաբար ապակե մարմինը, որը երկու կողմից սահմանափակված է գնդային մակերևույթներով:
Ինչպես երևում է նկարից, ոսպնյակը սահմանափակված է R1, R2 շառավիղներով և C1, C2 կենտրոններով գնդային մակերևույթներով: Ըստ իրենց ձևի՝ ոսպնյակները լինում են ուռուցիկ և գոգավոր:Ուռուցիկ են այն ոսպնյակները, որոնց միջին մասն ավելի հաստ է, քան եզրերը:Լինում են երկուռուցիկ (ա), հարթուռուցիկ (բ), գոգավոր-ուռուցիկ (գ) ոսպնյակներ:
Գոգավոր են այն ոսպնյակները, որոնց միջին մասն ավերի բարակ է, քան եզրերը:Նրանք նույնպես լինում են 3 տեսակի. երկգոգավոր (ա),հարթ-գոգավոր (բ), գոգավոր-ուռուցիկ (գ):
Ըստ իրենց չափերի՝ ոսպնյակները լինում են բարակ և ոչ բարակ:Բարակ են այն ոսպնյակները, որոնց միջին մասը (հաստությունը) զգալիորեն փոքր է նրանց սահմանափակող գնդային մակերևույթների շառավիղներից՝ d≪R1,R2Այստեղ d-ն ոսպնյակի հաստությունն է, R1,R2-ը՝ գնդոլորտների շառավիղները: Բարակ ոսպնյակների պայմանական նշաններն են՝
Կառուցման խնդիրներում հիմնականում ոսպնյակները ներկայացվում են այս պայմանական նշաններով: Ոսպնյակի բնութագրերն են.1. Գլխավոր օպտիկական առանցքըՈսպնյակը պարփակող գնդային մակերևույթների C1,C2 կենտրոնները միացնող ուղիղը կոչվում է գլխավոր օպտիկական առանցք:Այդ առանցքով ուղղված լուսային ճառագայթները ոսպնյակով անցնելիս չեն բեկվում և իրենց ուղղությունը չեն փոխում: 2. Օպտիկական կենտրոնըԲարակ ոսպնյակի և գլխավոր օպտիկական առանցքի հատման Օ կետը կոչվում է ոսպնյակի օպտիկական կենտրոն:Ոսպնյակի օպտիկական կենտրոնով անցնող ճառագայթը իր ուղղությունը չի փոխում:
3. Օպտիկական առանցքըՈսպնյակի Օ օպտիկական կենտրոնով անցնող ցանկացած ուղիղ կոչվում է ոսպնյակի օպտիկական առանցք:Ոսպնյակն ունի 1 գլխավոր և բազմաթիվ երկրորդային օպտիկական առանցքներ: Եթե ուռուցիկ ոսպնյակի նյութի բեկման ցուցիչն ավելի մեծ է միջավայրի բեկման ցուցիչից, օրինակ եթե միջավայրն օդն է, իսկ ոսպնյակը ապակի, ապա ուռուցիկ ոսպնյակը հավաքող է:Ոսպնյակը հավաքող է, եթե նրա վրա ընկնող ճառագայթների փունջը ոսպնյակով անցնելուց հետո հավաքվում է մեկ կետում:
Նույն պայմանի դեպքում գոգավոր ոսպնյակը ցրող է:Ոսպնյակը ցրող է, եթե նրա վրա ընկնող ճառագայթների փունջը ոսպնյակով անցնելուց հետո ցրվում է բոլոր ուղղություններով:
4. Գլխավոր կիզակետը Ոսպնյակի կարևոր բնութագրերից է նրա կիզակետը:Fկետը, որում, ոսպնյակում բեկվելուց հետո, հավաքվում են գլխավոր օպտիկական առանցքին զուգահեռ ճառագայթները, եթե ոսպնյակը հավաքող է, կամ ճառագայթների մտովի շարունակությունները, եթե ոսպնյակը ցրող է, կոչվում է ոսպնյակի գլխավոր կիզակետ:
Ցանկացած ոսպնյակ ունի երկու գլխավոր կիզակետ. ամեն կողմից մեկական, ոսպնյակի գլխավոր օպտիկական առանցքի վրա: ՈւշադրությունՀավաքող ոսպնյակի կիզակետերը իրական են, իսկ ցրողներինը՝ կեղծ:
5. Կիզակետային հեռավորությունՈսպնյակի օպտիկական կենտրոնից` Oմինչև գլխավոր կիզակետ` F ընկած հեռավորությունը կոչվում է ոսպնյակի կիզակետային հեռավորություն:Կիզակետային հեռավորությունը նշանակվում է OF կամ F, և չափվում է մետրով:
6. Կիզակետային հարթություն
Ոսպնյակի գլխավոր կիզակետով անցնող, գլխավոր օպտիկական առանցքին ուղղահայաց հարթությունը կոչվում է կիզակետային հարթություն, իսկ ուղղահայաց ուղիղը՝ կիզակետային ուղիղ:Եթե ոսպնյակը հավաքող է, ապա ճառագայթների կամայական զուգահեռ փունջ ոսպնյակով անցնելուց հետո հավաքվում է այդ ճառագայթներին զուգահեռ օպտիկական առանցքի և կիզակետային ուղղի հատման կետում: Եթե ոսպնյակը ցրող է, ապա նրանում բեկվելուց հետո, ճառագայթներին զուգահեռ օպտիկական առանցքի և կիզակետային ուղղի հատման կետում կհավաքվեն այդ ճառագայթների շարունակությունները:
7. Օպտիկական ուժ
Կիզակետային հեռավորության հակադարձ մեծությունը կոչվում է ոսպնյակի օպտիկական ուժ և նշանակվում է Dտառով: D=1/F Ինչքան փոքր է ոսպնյակի կիզակետային հեռավորությունը, այնքան ավելի մեծ է նրա օպտիկական ուժը, այսինքն ՝ այնքան ավելի ուժեղ է այն բեկում ճառագայթները:Հավաքող ոսպնյակի օպտիկական ուժը դրական է՝ D≻0, իսկ ցրող ոսպնյակի օպտիկական ուժը բացասական է՝D≺0:Օպտիկական ուժի չափման միավորը 1 դիօպտրիան է: 1դպտր=1մ−1
1 դպտր-ն1մ կիզակետային հեռավորությամբ ոսպնյակի օպտիկական ուժն է:Օպտիկական բազմաթիվ սարքեր կազմված են մի քանի ոսպնյակից:Իրար հպված մի քանի ոսպնյակներով համակարգի օպտիկական ուժը հավասար է այդ համակարգի ոսպնյակների օպտիկական ուժերի գումարին:
D=D1+D2, որտեղ D-ն համակարգի օպտիկական ուժն է, իսկ D1-ը և D2-ը առանձին ոսպնյակների օպտիկական ուժերն են:
8. Խոշորացում Ոսպնյակի միջոցով ստացվող առարկայի պատկերը կարող է առարկայից ավելի մեծ կամ փոքր չափեր ունենալ:
Ոսպնյակի խոշորացումը ցույց է տալիս, թե առարկայի պատկերի գծային չափերը առարկայի չափերի որ մասն են կազմում:Խոշորացումը նշանակում են Гտառով:Առարկայի պատկերի և առարկայի գծային չափերի հարաբերությունը կոչվում է ոսպնյակի խոշորացում:
Γ=H/h, որտեղ H-ը առարկայի պատկերի բարձրությունն է, իսկ h-ը՝ առարկայինը: